EMB-OPT02

User Manual

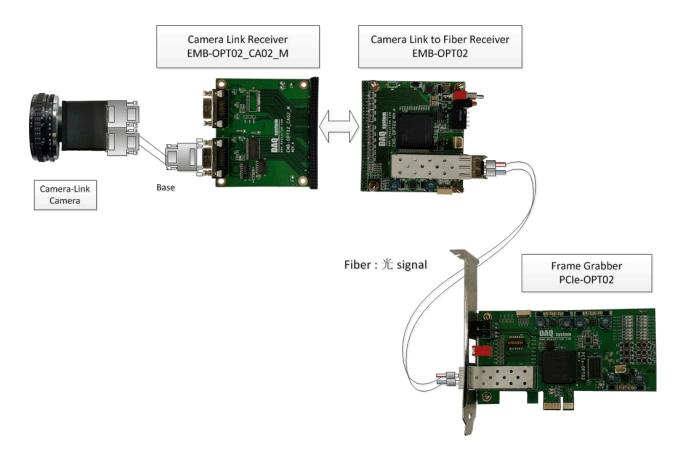
Version 1.0

© 2005 DAQ SYSTEM Co., Ltd. All rights reserved.

Microsoft® is a registered trademark; Windows®, Windows NT®, Windows XP®, Windows 7®, Windows 8®, Windows 10® All other trademarks or intellectual property mentioned herein belongs to their respective owners.

Information furnished by DAQ SYSTEM is believed to be accurate and reliable, However, no responsibility is assumed by DAQ SYSTEM for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or copyrights of DAQ SYSTEM.

The information in this document is subject to change without notice and no part of this document may be copied or reproduced without the prior written consent.

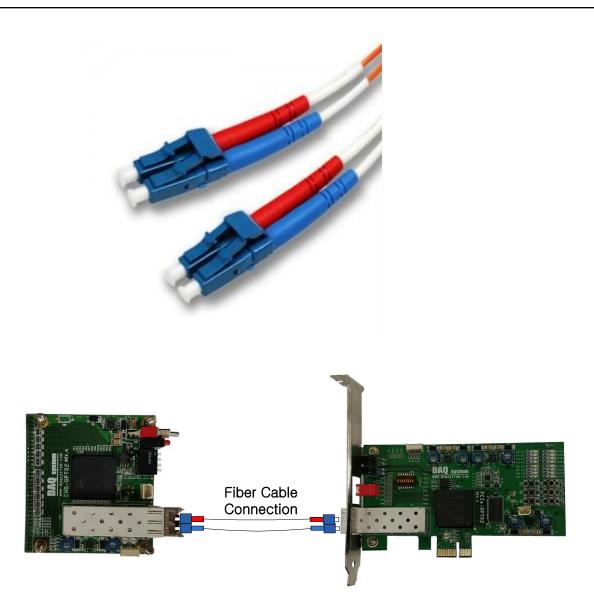

Contents

1. Er	VIB-OP102 Introdu	uction	2
2. EI	MB-OPT02 Function	on	4
2-1	J1 Connector		5
2-2	JP1 Connector		7
2-3	SW1 Switch		7
2-4	SW3 Switch		8
2-5	CN1(SFP) Connector		8
2-7	Fiber Cable		10
Appeı	ndix		
A-1	Board Size		12
A-2	Repair Regulations		13

1. EMB-OPT02 Introduction

The EMB-OPT02 board converts the parallel (D0..D47) data signal of the J1 connector into an optical signal and outputs it.

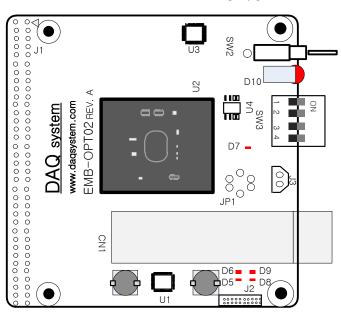
[Figure 1-1] shows an example of using the EMB-OPT02 board, which converts the image signal from the Camera Link camera into light and transmits it to the PCIe-OPT02 board, which is the light receiving board. 1 Base Camera Link configuration is supported.



[Figure 1-1. EMB-OPT02와 PCIe-OPT02 Connection]

Reference) The most important factor in selecting an optical cable is the communication distance.

A multimode cable provides a maximum transmission distance of 2Km, and a single-mode cable basically provides a transmission distance depending on the type of equipment. Communication using light basically uses 2Core. (RX-1 CORE, TX-1 CORE)


Therefore, be careful when connecting the board with a 2 core optical cable as shown in the figure below.

Caution) Be careful not to twist the cable when connecting it to the SFP cage.

2. EMB-OPT02 Function

Each name and function description of EMB-OPT2 is as follows.

EMB-OPT02 Board

[그림 2-1. EMB-OPT01 Layout]

[Table 1. EMB-OPT02 main function description]

No.	Name	Description	
1	J1	Camera Link / DIO_IN047 Connector	
2	U1, U3	1.2V, 1.8V, 3.3V Output	
3	U2	FPGA	
4	CN1	SFP(Small Form Factor Pluggable) Connector	
5	U4	Serial Memory	
6	JP1	12V Circular DC Jack	
7	SW2	12V Power Switch	
8	SW3	Connection mode selection switch	

The LED shows the inner workings.

LED D5: Detects Pclk (Pixel Clock) signal.

LED D6: Detects Lval (Line Valid) signal.

LED D7: Lights up when power is supplied to the board and initialization is completed.

LDE D8: Detects Dval (Data Valid) signal.

LED D9: Vsync (Vertical Sync.) /16 division signal

LED D10 Red is On when optical is connected.

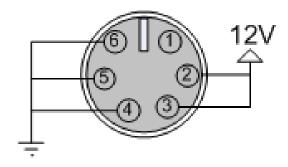
LED D10 Green turns on when the optical channel (#0) horizontal sync signal (Hsync) is detected.

2-1 J1 Connector

The figure below shows the pin map of the J1 connector.

[Figure 2-2. EMB-OPT02 J1 Connector Pin-out]

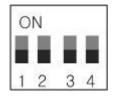
[Table 2. J1 Connector]


No.	Name	Description	Remark
1	3.3V	3.3V Power	
2	12V	12V Power	
3	DIO_IN0	Digital In/Out Data 0	
4	DIO_IN1	Digital In/Out Data 1	
5	DIO_IN2	Digital In/Out Data 2	
6	DIO_IN3	Digital In/Out Data 3	
7	DIO_IN4	Digital In/Out Data 4	
8	DIO_IN5	Digital In/Out Data 5	
9	DIO_IN6	Digital In/Out Data 6	
10	DIO_IN7	Digital In/Out Data 7	
11	DIO_IN8	Digital In/Out Data 8	
12	DIO_IN9	Digital In/Out Data 9	
13	DIO_IN10	Digital In/Out Data 10	
14	DIO_IN11	Digital In/Out Data 11	
15	DIO_IN12	Digital In/Out Data 12	
16	DIO_IN13	Digital In/Out Data 13	
17	DIO_IN14	Digital In/Out Data 14	
18	DIO_IN15	Digital In/Out Data 15	
19	DIO_IN16	Digital In/Out Data 16	
20	DIO_IN17	Digital In/Out Data 17	
21	DIO_IN18	Digital In/Out Data 18	
22	DIO_IN18	Digital In/Out Data 19	
23	DIO_IN20	Digital In/Out Data 20	
24	DIO_IN21	Digital In/Out Data 21	
25	DIO_IN22	Digital In/Out Data 22	
26	DIO_IN23	Digital In/Out Data 23	
27	Ground		
28	Ground		

29	DIO_IN24	Digital In/Out 24	
30	DIO_IN25	Digital In/Out 25	
31	DIO_IN26	Digital In/Out 26	
32	DIO_IN27	Digital In/Out 27	
33	DIO_IN28	Digital In/Out 28	
34	DIO_IN29	Digital In/Out 29	
35	DIO_IN30	Digital In/Out 30	
36	DIO_IN31	Digital In/Out 31	
37	DIO_IN32	GPIO00	
38	DIO_IN33	GPIO01	
39	DIO_IN34	GPIO02	
40	DIO_IN35	GPIO03	
41	DIO_IN36	GPIO04	
42	DIO_IN37	GPIO05	
43	DIO_IN38	GPIO06	
44	DIO_IN39	GPIO07	
45	DIO_IN40	GPIO08	
46	DIO_IN41	GPIO09	
47	DIO_IN42	GPIO10	
48	DIO_IN43	GPIO11	
49	DIO_IN44	GPIO12	
50	DIO_IN45	GPIO13	
51	DIO_IN46	GPIO14	
52	DIO_IN47	GPIO15	
53	Ground		
54	Ground		
55	LVAL	Line Valid	
56	FVAL	Frame Valid	
57	DVAL	Data Valid	
58	PCLK	Pixel Clock	
59	Ground		
60	Ground		
61	CC_D0	Camera Control output 0	
62	CC_D1	Camera Control output 1	
63	CC_D2	Camera Control output 2	
64	CC_D3	Camera Control output 3	
65	Ground		
66	Ground		
67	DTX	Serial to Frame grabber-	
68	DRX	Serial to Camera+	

69	I2C_SDA	I2C Serial Data	
70	I2C_SCL	I2C Serial Clock	

2-2 JP1 Connector


This is an external 12V DC Jack power connector. (HR10-7R-6S-RA)

[Figure 2-3. Rated power]

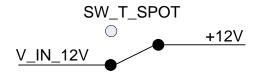
2-3 SW1 Switch

It is an option select switch.

SWITCH 3

OFF: Vsync

ON: Reverse Vsync


SWITCH 4

OFF: Dval Use
ON: Dval not use

SWITCH #2, #4 ~ #8 : Reserved

2-4 SW3 Switch

It is a 12V DV external power switch.

[Figure 2-4. SW3]

2-5 CN1(SFP) Connector

In the case of EMB-OPT02, an SFP (Small Form Factor Pluggable) connector is used as a Fiber-Transmission Transceiver device. The SFP transceiver is designed to support various optical transmissions such as SONET, Gigabit Ethernet, and Fiber Channel. It supports hot-pluggable transceiver and can be connected to network device motherboard with fiber or copper networking cable.

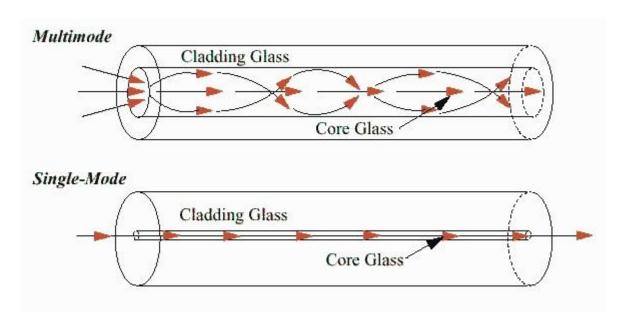
SFP is connected to the module that connects to the cage and connector, and there are Tx (Transceiver) and Rx (Receiver) together.

[Figure 2-5. SFP & SFP Cage]

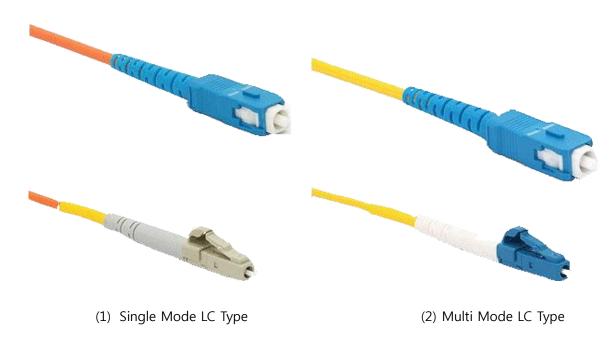
[Table 3. CN1 SFP Connector]

No.	Name	Description	Remark
1	VeeT	Transmitter Ground	
2	TxFault	Transmitter Fault	
3	TxDisable	Transmitter Disable	
4	SDA	Serial Interface Data Line	
5	SCL	Serial Interface Clock	
6	MOD-ABS	Module Absent, connected to VeeT or VeeR	
7	RS0	Rx Rate Select	
		Open or Low = 2.125 or 4.25 Gb/s Fibre Channel (Low	
		Bandwidth)	
		High = 8.5 Gb/s Fibre Channel (High Bandwidth)	
8	LOS	When high, indicates received optical power below	
		worst-case receiver sensitivity.	
9	RS1	Tx Rate Select	
		Open or Low = 2.125 or 4.25 Gb/s Fibre Channel (Low	
		Bandwidth)	
		High = 8.5 Gb/s Fibre Channel (High Bandwidth)	
10	VeeR	Receiver Ground	
11	VeeR	Receiver Ground	
12	RD-	Receiver Data	
13	RD+	Receiver Inverted Data	
14	VeeR	Receiver Ground	
15	VccR	Receiver Power(3.3V)	
16	VccT	Transmitter Power(3.3V)	
17	VeeT	Transmitter Ground	
18	TD+	Transmitter Data	
19	TD-	Transmitter Inverted Data	
20	VeeT	Transmitter Ground	

(Note) For detailed specifications, refer to the Camera Link standard document.


2-6 Fiber Cable

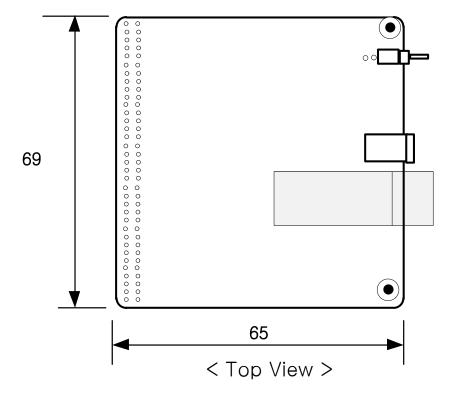
An optical cable is a transmission cable made to transmit the converted laser signal to a long distance and uses two transmission modes.


Single Mode: It is used for broadband and long-distance transmission with a core diameter of $9 \, \mu \text{m}$, and it is possible to transmit without relay up to about 50Km. In the case of single-mode with a small core diameter, it is difficult to transmit a large amount of information because the cable passage is narrow, but instead it can be transmitted over a long distance. The cable color is mainly yellow.

Multi Mode: The core diameter is $50\sim100~\mu\text{m}$, so it is often used in short distances. In the case of multimode with a large core diameter, a large amount of information can be transmitted because the passage of the cable is wide, and the color of the cable is mainly orange.

Optical connectors include LC, ST, MTRJ, SC, FC, and MU types, but EMB-OPT02 mainly uses multimode LC type as shown in [Figure 2-7].

[Figure 2-6. Signal transmission method according to transmission mode]



[Figure 2-7. Cable type according to transmission mode]

Appendix

A-1 Board Size

The external sizes of the board are as follows. (65 x 69mm)

A-2 Repair Regulations

Thank you for purchasing DAQ SYSTEM's product. Please refer to the following regarding Customer Service stipulated by DAQ SYSTEM.

- (1) Please read the user's manual and follow the instructions before using the DAQ SYSTEM product.
- (2) When returning the product to be repaired, please send it to the head office with the symptoms of the malfunction as well.
- (3) All DAQ SYSTEM products have a one-year warranty.
 - -. The warranty period is counted from the date the product is shipped from DAQ SYSTEM.
 - -. Peripherals and third-party products not manufactured by DAQ SYSTEM are covered by the manufacturer's warranty.
 - -. If repair is required, please contact the contact points below.
- (4) Even during the free repair warranty period, paid repairs are made in the following cases.
 - 1) Failure or damage caused by not following the user's manual
 - ② Failure or damage caused by customer negligence during product transportation after purchase
 - ③ Natural phenomena such as fire, earthquake, flood, lightning, pollution, etc. or power supply exceeding the recommended range malfunction or damage
 - 4 Failures caused by inappropriate storage environment (eg, high temperature, high humidity, volatile chemicals, etc.) damaged
 - 5 Failure or damage due to unreasonable repair or modification
 - 6 Products whose serial number has been changed or intentionally removed
 - ② In the event that DAQ SYSTEM determines that it is the customer's negligence for other reasons
- (5) The customer must bear the shipping cost of returning the repaired product to DAQ SYSTEM.
- (6) The manufacturer is not responsible for any problems caused by incorrect use regardless of our warranty provisions.

MEMO

Contact Point

Web sit : https://www.daqsystem.com

Email: postmaster@daqsystem.com

